
E1UC

Switch/Groomer

API REFERENCE GUIDE

Applicable Products

E1UC-API-3103 E1UC Interface API

Part Number: E1UC-API-3103

Document Reference

E1UC-SAPI-0001

Publication Date

28 April 2016

Published by

Somerdata Ltd.
1 Riverside Business Park
Bristol
BS4 4ED
UK

Sales & Customer Support

Phone: +44 (0)117-9634050

E-Mail: sales@somerdata.com
 support@somerdata.com
Website: www.somerdata.com

mailto:sales@somerdata.com
mailto:support@somerdata.com
http://www.somerdata.com/

E1UC Switch/Groomer

API reference Guide

E1UC Switch/Groomer

API reference Guide

REVISION HISTORY

Issue Date Notes

1 28 Oct. 11 Initial Issue. Relates to DLL version
3103.0.7.0.

2 1 Nov. 11 Added structures. Relates to version
DLL 3101.0.8.0

3 4 Nov. 11 Added Recording to file information.

4 Sep 2014 Added Functions

5 April 2016 Changed data presentation

E1UC Switch/Groomer

API Reference Guide 1-1

CONTENTS

APPLICABLE PRODUCTS I
DOCUMENT REFERENCE I
PUBLICATION DATE I
PUBLISHED BY I
SALES & CUSTOMER SUPPORT I

1. INTRODUCTION 1-3
IN THIS SECTION 1-3
WHAT’S IN THIS USER GUIDE 1-3
USER GUIDE AVAILABILITY 1-3

2. DESCRIPTION 2-1

3. API FUNCTION LISTING 3-1
CREATELISTE1UCDEVICE 3-2
OPENE1UCDEVICE 3-3
OPENE1UCSYSTEM_CONTROLPORTS 3-4
CLOSEE1UCDEVICE 3-5
GETE1UCDEVICEFIRMWARE 3-6
GETE1UCDEVCONFIGURATION 3-7
SETE1UCDEVICECONFIGURATION 3-8
GETE1UCXFIFO 3-9
SETE1UCXFIFO 3-9
GETE1UCNUMBERSTREAMAVAILABLE 3-10
GETE1UCSTREAMSTATUS 3-11
SETE1UCSTREAMCONTROL 3-12
GETE1UCSIGSTATUS 3-13
GETE1UCMATRIXSTATUS 3-14
SETE1UCMATRIXCONTROL 3-15
GETE1UCGROOMSTATUS 3-16
SETE1UCGROOMCONTROL 3-17
GETE1UCSYSTEMNAME (NOT IMPLEMENTED) 3-18
SETE1UCSYSTEMNAME (NOT IMPLEMENTED) 3-18
GETE1UCTESTFEATURE 3-19
SETE1UCTESTFEATURE 3-20
RESETS2CFIFO 3-21

E1UC Switch/Groomer

API Reference Guide 1-2

RESETC2SFIFO 3-22
INITDATATRANSFER 3-23
ENDDATATRANSFER 3-24
READSTREAMBUFFER 3-25
WRITESTREAMBUFFER 3-25
SENDFILETOCARD 3-27
STRUCTURES 3-28
ERROR CODES 3-30

4. RECORDING INPUT STREAMS TO FILE 4-31
OPERATION 4-31

GET A DATA HANDLE 4-31
INITIALISE DATA TRANSFER 4-31
READ DATA TO FILE 4-31
END DATA TRANSFER 4-31
CODE SNIPPET EXAMPLE (C#) 4-32

DATA PRESENTATION 4-34
FILE HEADER 4-35
SYNCHRONISATION 4-36
BUFFERING 4-37

5. SUPPORT 5-1
IN THIS SECTION 5-1
WHAT TO DO IF YOU HAVE A PROBLEM 5-1
SERVICING, MAINTENANCE AND REPAIRS 5-1
IF YOU NEED SUPPORT 5-1
SUPPORT REQUESTS 5-2
SOMERDATA CONTACT INFORMATION 5-3

E1UC Switch/Groomer

API Reference Guide 1-3

1. INTRODUCTION

In this Section

WHAT’S IN THIS USER GUIDE 1-3
USER GUIDE AVAILABILITY 1-3

What’s in this User Guide

This User Guide covers SomerData’s E1UC-API-3103 E1UC
interface API.

Section 2 – PRODUCT DESCRIPTION gives an overview of
your unit’s capabilities and features.

Section 3 – API function listing

Section 4 – SUPPORT describes the procedure and contact
details for obtaining customer support on this product.

User Guide Availability

Printed copies of Hardware and Software User Guides are
supplied with the original products on request.

Additional printed copies, including the Programmer’s
Reference Guide can be supplied on request. Please contact
your local supplier or SomerData for ordering details.

Electronic copies (Adobe Acrobat files) are included on the
SomerData CD-ROM that is supplied with the original
products.

The electronic User Guide library, which also includes product
data sheets, can be accessed by browsing the \Documents\
folder for the required document.

Additional and updated copies of the CD-ROM can be
supplied on request. Please contact your local supplier or
SomerData for ordering details.

E1UC Switch/Groomer

API Reference Guide 2-1

2. DESCRIPTION

E1UC is a versatile USB controlled Switch and Groomer for
E1/G.703 signals.
An E1UC board has four E1 IO ports and 1 dedicated Grooming
output.
Each Input stream can be routed to any output stream.
When a G.704 framed signal is detected, each timeslot from each
input can be routed to the groomed output.
An E1UC system can be made of 1 E1UC board in a self
contained portable box or up to 4 boards connected to each other
in a 1U Rack mountable case.
The API provides all the functions required to control and retrieve
status from E1UC.
This Application Programming Interface defines functions,
procedures, constants and entry points that can be used in a
Microsoft Windows programming environment.
The API is dependent on the .NET framework and this must be
installed before use.
The API is targeted towards the C# programming language, but a
Dynamic Link Library may be used in other Windows
environments
The API is presented as a series of functions comprising passed
variables and returned error codes and/or exceptions.
Since the E1UC uses the FTDI USB communications chipset,
many of the functions have corollary functions in the FTDI API
and structures are similar.
Some indication is given of programme development in this guide,
contact Somerdata support for help and advice if developing your
own application.
Development of the API is continuous so this document may not
always reflect the latest available issue.
The E1UC suite of applications uses this API, so it is continuously
being tested and verified, however if you find errors please let us
know, support@somerdata.com

E1UC Switch/Groomer

API Reference Guide 3-1

3. API function listing

This section details the API functions as a reference list, in an
order which reflects the way a device may be accessed and used.
E1UC has two endpoint interfaces, one for control and the other
for data. Mediation within the device and sophisticated buffering
ensures that data flow is not interrupted due to status requests,
and that status is not unreasonably held up due to long data
transfers.
Return values are enumerated as constants, defined at the end of
the reference section.

E1UC Switch/Groomer

API Reference Guide 3-2

createListE1UCDevice

Summary:

This function builds an E1UC object containing the list of all E1UC
systems connected. Each system is composed of a unique serial
number and a list of all boards accessible in the system. Finally
each board has two structures, <DEV_INFO>, used to open a
device. One is used to control the board, the other is to capture
data.

Definition:

UInt32 createListE1UCDevice()
Parameters:

None
Return Value:

Success : ERROR_SUCCESS

Failure : ERROR_IO
ERROR_DEVICE_NOT_FOUND
ERROR_INSUFFICIENT_RESSOURCES
ERROR_NUMBER_BYTE_READ
ERROR_NUMBER_BYTE_WRITTE
ERROR_UNKNOWN

E1UC
object

System[0]

Board[0]

Control

Data

Board[1]

Control

Data

Board[2]

Control

Data

Board[3]

Control

Data

System[1]

...

...

...

E1UC Switch/Groomer

API Reference Guide 3-3

openE1UCDevice

Summary:

Opens the device and return a Handle which will be used for
subsequent accesses. Use for single board access.

Definition:

IntPtr openE1UCDevice(DEV_INFO DeviceInfo, ref UInt32
CodeError)

Parameters:

DeviceInfo Structure which contains all information
needed to open a device

CodeError Represents the error code return by the
function

Return Value:

Success : a handle to the E1UC device requested +
ERROR_SUCCESS

Failure : NULL if no device found + Specific error code
which could be :

ERROR_DEVICE_NOT_FOUND
ERROR_DEVICE_NOT_OPENED
ERROR_UNKNOWN

E1UC Switch/Groomer

API Reference Guide 3-4

openE1UCSystem_ControlPorts

Summary:

Opens all the connected devices in a system and returns an array
of handles which will be used for subsequent accesses.
Definition:

IntPtr[] openE1UCSystem_ControlPorts(UInt32 IndexSystem, ref
UInt32 CodeError)
Parameters:

IndexSystem The number of the E1UC system
requested

CodeError Represents the error code return by the
function

Return Value:

Success : a handle to the E1UC device requested +
ERROR_SUCCESS

Failure : NULL if no device found + Specific error code
which could be :

ERROR_DEVICE_NOT_FOUND
ERROR_DEVICE_NOT_OPENED
ERROR_UNKNOWN

E1UC Switch/Groomer

API Reference Guide 3-5

closeE1UCDevice

Summary:

Close an opened device.

Definition:

UInt32 closeE1UCDevice(IntPtr Handle)

Parameters:

Handle Handle of the device

Return Value:

Success : ERROR_SUCCESS

Failure :
ERROR_IO
ERROR_INVALID_HANDLE
ERROR_UNKNOWN

E1UC Switch/Groomer

API Reference Guide 3-6

getE1UCDeviceFirmware

Summary:

This function provides information about the device firmware.

Definition:

UInt32 getE1UCDeviceFirmware(IntPtr Handle, ref DEV_FW
DeviceFirmware)

Parameters:

Handle Handle of the device

DeviceFirmware Pointer to a DEV_FW structure to receive
device firmware information

Return Value:

Success : ERROR_SUCCESS

Failure : ERROR_INVALID_HANDLE
ERROR_READ_REGISTER
ERROR_UNKNOWN

E1UC Switch/Groomer

API Reference Guide 3-7

getE1UCDevConfiguration

Summary:

This function provides information about the device configuration.

Definition:

UInt32 getE1UCDeviceConfiguration(IntPtr Handle, ref
DEV_CONFIGURATION DeviceConfiguration)

Parameters:

Handle Handle of the device

DeviceConfiguration Pointer to a DEV_CONFIGURATION
structure to receive device configuration
information

Return Value:

Success : ERROR_SUCCESS

Failure : ERROR_INVALID_HANDLE
ERROR_READ_REGISTER
ERROR_UNKNOWN

E1UC Switch/Groomer

API Reference Guide 3-8

setE1UCDeviceConfiguration

Summary:

This function sets the device configuration.

Definition:

UInt32 setE1UCDeviceConfiguration(IntPtr Handle,
DEV_CONFIGURATION DeviceConfiguration)

Parameters:

Handle Handle of the device

DeviceConfiguration Pointer to a DEV_CONFIGURATION
structure to provide device configuration
information

Return Value:

Success : ERROR_SUCCESS

Failure : ERROR_INVALID_HANDLE
ERROR_READ_REGISTER
ERROR_UNKNOWN

E1UC Switch/Groomer

API Reference Guide 3-9

getE1UCXFifo

Summary:

This function provides information about the device’s FIFO buffer.
(See later section)

Definition:

UInt32 getE1UCXFifo(IntPtr Handle, ref USB_XFIFO XilinxFifo)

Parameters:

Handle Handle of the device

XilinxFifo Pointer to a USB_XFIFO structure to receive
FPGA FIFO status information

Return Value:

Success : ERROR_SUCCESS

Failure : ERROR_INVALID_HANDLE
ERROR_READ_REGISTER
ERROR_UNKNOWN

setE1UCXFifo

Summary:

This function sets the device’s FIFO controls.
Definition:

UInt32 setE1UCXFifo(IntPtr Handle, USB_XFIFO XilinxFifo)
Parameters:

Handle Handle of the device

XilinxFifo Pointer to a USB_XFIFO structure to provide
FPGA FIFO control information

Return Value:

Success : ERROR_SUCCESS

Failure : ERROR_INVALID_HANDLE
ERROR_READ_REGISTER
ERROR_UNKNOWN

E1UC Switch/Groomer

API Reference Guide 3-10

getE1UCNumberStreamAvailable

Summary:

This function provides the number of streams available for the
entire system. If the system is a Standalone it will be 4, otherwise
it will be up to 16.

Definition:

UInt32 getE1UCNumberStreamAvailable (IntPtr Handle, ref
UInt32 NumberStreamAvailable)

Parameters:

Handle Handle of the device

NumberStreamAvailable Pointer to a UInt32 that will contain
the number of stream available

Return Value:

Success : ERROR_SUCCESS

Failure : ERROR_INVALID_HANDLE
ERROR_READ_REGISTER
ERROR_UNKNOWN

E1UC Switch/Groomer

API Reference Guide 3-11

getE1UCStreamStatus

Summary:
This function provides status about the stream selected.
Definition:
UInt32 getE1UCStreamStatus(IntPtr[] Handle,UInt32 Stream, ref
STREAM_STATUS StreamStatus)
Parameters:

Handle Array which contains all handles of the
system concerned. This array could be
provided by the function
openE1UCSystem

Stream The canonical number of the stream
requested

StreamStatus Pointer to a STREAM_STATUS structure to
receive Stream Status information

Return Value:

Success : ERROR_SUCCESS

Failure : ERROR_INVALID_HANDLE
ERROR_READ_REGISTER
ERROR_UNKNOWN

E1UC Switch/Groomer

API Reference Guide 3-12

setE1UCStreamControl

Summary:
This function sets the controls for the selected stream.

Definition:
UInt32 setE1UCStreamControl(IntPtr[] Handle, UInt32 Stream, ref
STREAM_STATUS StreamStatus)

Parameters:

Handle Array which contains all handles of the
system concerned. This array could be
provided by the function
openE1UCSystem

Stream The number of the stream requested

StreamStatus This parameters provides Stream Status
information to the system

Return Value:

Success : ERROR_SUCCESS

Failure : ERROR_INVALID_HANDLE
ERROR_WRITE_REGISTER
ERROR_UNKNOWN

E1UC Switch/Groomer

API Reference Guide 3-13

getE1UCSigStatus

Summary:

This function provides the signal status about the stream
selected.

Definition:

UInt32 getE1UCSignalStatus(IntPtr[] Handle, UInt32 Stream, ref
SIG_STATUS SignalStatus)

Parameters:

Handle Array which contains all handles of the
system concerned. This array could be
provided by the function openE1UCSystem

Stream The number of the stream requested

SignalStatus Pointer to a SIG_STATUS structure to
receive Signal Status information

Return Value:

Success : ERROR_SUCCESS

Failure : ERROR_INVALID_HANDLE
ERROR_READ_REGISTER
ERROR_UNKNOWN

E1UC Switch/Groomer

API Reference Guide 3-14

getE1UCMatrixStatus

Summary:

This function provides the current switch matrix settings. The
variable StreamDestination of the MATRIX_BUF structure has to
be initialised before calling this function.
Definition:

UInt32 getE1UCMatrixStatus(IntPtr[] Handle, ref MATRIX_BUF
MatrixBuf)
Parameters:

Handle Array which contains all handles of the
system concerned. This array could be
provided by the function openE1UCSystem

MatrixBuf Pointer to a MATRIX_BUF structure to
receive the current switch matrix settings

Return Value:

Success : ERROR_SUCCESS

Failure : ERROR_INVALID_HANDLE
ERROR_READ_REGISTER
ERROR_NOT_ENOUGH_BOARD
ERROR_INDEX_STREAM_OUT_OF_RANGE
ERROR_UNKNOWN

E1UC Switch/Groomer

API Reference Guide 3-15

setE1UCMatrixControl

Summary:

This function sets the switch matrix settings, the variable
StreamDestination of the MATRIX_BUF structure has to be
initialised before calling this function.

Definition:

UInt32 setE1UCMatrixControl(IntPtr[] Handle, MATRIX_BUF
MatrixBuf)

Parameters:

Handle Array which contains all handles of the
system concerned. This array could be
provided by the function openE1UCSystem

MatrixBuf Pointer to a MATRIX_BUF structure to
provide the current switch matrix settings

Return Value:

Success : ERROR_SUCCESS

Failure : ERROR_INVALID_HANDLE
ERROR_WRITE_REGISTER
ERROR_NOT_ENOUGH_BOARD
ERROR_INDEX_STREAM_OUT_OF_RANGE
ERROR_UNKNOWN

E1UC Switch/Groomer

API Reference Guide 3-16

getE1UCGroomStatus

Summary:

This function provides the current groomed output settings.
Variables E1Number and TimeslotDestinationE1 of the
GROOM_BUF structure have to be initialised before calling this
function.

Definition:

UInt32 getE1UCGroomStatus(IntPtr[] Handle, ref GROOM_BUF
GroomBuf)
Parameters:

Handle Array which contains all handles of the
system concerned. This array could be
provided by the function openE1UCSystem

GroomBuf Pointer to a GROOM_BUF structure to
receive the current groomed output settings

Return Value:

Success : ERROR_SUCCESS

Failure : ERROR_INVALID_HANDLE
ERROR_READ_REGISTER
ERROR_NOT_ENOUGH_BOARD
ERROR_INDEX_STREAM_OUT_OF_RANGE
ERROR_UNKNOWN

E1UC Switch/Groomer

API Reference Guide 3-17

setE1UCGroomControl

Summary:

This function sets the groomed output settings. Variables
E1Number and TimeslotDestinationE1 of the GROOM_BUF
structure have to be initialised before calling this function.

Definition:

UInt32 setE1UCGroomControl(IntPtr[] Handle, GROOM_BUF
GroomBuf)

Parameters:

Handle Array which contains all handles of the
system concerned. This array could be
provided by the function openE1UCSystem

GroomBuf Pointer to a GROOM_BUF structure to
provide the current groomed output settings

Return Value:

Success : ERROR_SUCCESS

Failure : ERROR_INVALID_HANDLE
ERROR_WRITE_REGISTER
ERROR_NOT_ENOUGH_BOARD
ERROR_INDEX_STREAM_OUT_OF_RANGE
ERROR_UNKNOWN

E1UC Switch/Groomer

API Reference Guide 3-18

getE1UCSystemName (not implemented)

Summary:

This function provides the non-volatile system name field.
Definition:

UInt32 getE1UCSystemName(IntPtr Handle, ref string strName)
Parameters:

Handle Handle of the device

strName Pointer to a string variable to receive the
current system name

Return Value:

Success : ERROR_SUCCESS

Failure : ERROR_INVALID_HANDLE
ERROR_READ_REGISTER
ERROR_UNKNOWN

setE1UCSystemName (not implemented)

Summary:

This function sets the non-volatile system name.

Definition:

UInt32 setE1UCSystemName(IntPtr Handle, string strName)

Parameters:

Handle Handle of the device

strName String variable which contains the system
name

Return Value:

Success : ERROR_SUCCESS

Failure : ERROR_INVALID_HANDLE
ERROR_WRITE_REGISTER
ERROR_UNKNOWN

E1UC Switch/Groomer

API Reference Guide 3-19

getE1UCTestFeature

Summary:

This function gets the status of the Active LED and test LED. This
is useful for “Hello World” type functions.

Definition:

UInt32 getE1UCTestFeature(IntPtr Handle, ref TEST_SYSTEM
TestSystem)
Parameters:

Handle Handle of the device

TestSystem Pointer to a TEST_SYSTEM structure to
receive the current state of the Test LED
and the Heartbeat

Return Value:

Success : ERROR_SUCCESS

Failure : ERROR_INVALID_HANDLE
ERROR_READ_REGISTER
ERROR_UNKNOWN

E1UC Switch/Groomer

API Reference Guide 3-20

setE1UCTestFeature

Summary:

This function sets the test LED.
Definition:

UInt32 setE1UCTestFeature(IntPtr Handle, TEST_SYSTEM
TestSystem)
Parameters:

Handle Handle of the device

TestSystem Pointer to a TEST_SYSTEM structure to
provide the current state of the Test LED.
Heartbeat is a read only bit

Return Value:

Success : ERROR_SUCCESS

Failure : ERROR_INVALID_HANDLE
ERROR_WRITE_REGISTER
ERROR_UNKNOWN

E1UC Switch/Groomer

API Reference Guide 3-21

resetS2CFifo

Summary:

This function does a reset of the FIFO from the host system (S) to
the E1UC card(C), clearing all data.

Definition:

UInt32 resetHostToE1UCSystemFifo(IntPtr HandleControl,
IntPtr HandleData)
Parameters:

HandleControl Handle of the control device concerned

HandleData Handle of the data device concerned

Return Value:

Success : ERROR_SUCCESS

Failure : ERROR_INVALID_HANDLE

ERROR_READ_REGISTER

ERROR_WRITE_REGISTER

ERROR_UNKNOWN

E1UC Switch/Groomer

API Reference Guide 3-22

resetC2SFifo

Summary:

This function does a reset of the FIFO from the Card(C) to the
Host system (S), clearing all waiting data.

Definition:

UInt32 resetE1UCSystemToHostFifo(IntPtr HandleControl,
IntPtr HandleData)
Parameters:

HandleControl Handle of the control device concerned

HandleData Handle of the data device concerned

Return Value:

Success : ERROR_SUCCESS

Failure : ERROR_INVALID_HANDLE

ERROR_READ_REGISTER

ERROR_WRITE_REGISTER

ERROR_UNKNOWN

E1UC Switch/Groomer

API Reference Guide 3-23

InitDataTransfer

Summary:

This function initializes the system to be ready for a read or a
write data operation.
Definition:

UInt32 InitDataTransfer(IntPtr HandleControl, IntPtr HandleUSB,
bool PCToBoard, byte Mask_Streams)
Parameters:

HandleControl Handle of the control device concerned

HandleData Handle of the data device concerned

PCToBoard Bool variable which controls the direction
for the data transfer

Mask_Streams Byte variable which contains the streams
to be read or write

Return Value:

Success : ERROR_SUCCESS

Failure : ERROR_INVALID_HANDLE
ERROR_READ_REGISTER
ERROR_WRITE_REGISTER
ERROR_UNKNOWN

E1UC Switch/Groomer

API Reference Guide 3-24

EndDataTransfer

Summary:

This function has to be called to finish a read or write operation
properly.
Definition:

UInt32 EndDataTransfer(IntPtr HandleControl, IntPtr HandleUSB)
Parameters:

HandleControl Handle of the control device concerned

HandleUSB Handle of the data device concerned

Return Value:

Success : ERROR_SUCCESS

Failure : ERROR_INVALID_HANDLE
ERROR_READ_REGISTER
ERROR_WRITE_REGISTER
ERROR_UNKNOWN

E1UC Switch/Groomer

API Reference Guide 3-25

readStreamBuffer

Summary:

This function saves up to 65280 bytes from the 4 streams (or
less: depend on configuration of initDataTransfer) into different
files.
Definition:

UInt32 readStreamBuffer(IntPtr Handle, FileStream[] myFiles)
UInt32 readStreamBuffer(IntPtr Handle, FileStream myFile)
Parameters:

Handle Handle of the device

myFile Single file in which data from each stream for
this card is saved: data from each stream is
interleaved, 1 frame per stream at a time.
(See section 0 Data presentation for the
definition of a frame)

myFiles Array of files in which data are saved:
Stream 0,1 ,2, 3 into myFiles[0] ...

Return Value:

Success : ERROR_SUCCESS

Failure : ERROR_INVALID_HANDLE
ERROR_READ_REGISTER
ERROR_WRITE_REGISTER
ERROR_UNKNOWN
ERROR_INVALID_DATA_LENGTH

writeStreamBuffer

Summary:

This function sends an array of bytes (buffer) to the E1UC USB
data port. This data buffer must have data from all streams that
have been enabled in initDataTransfer E1 frame interleaved.

Each E1 frame is preceded with an 8 byte header (See section 0
Data presentation for the definition of a frame), therefore the
buffer must be modulo 40 bytes * number streams enabled in
length. It must also be less than 64Kbytes in length.

E1UC Switch/Groomer

API Reference Guide 3-26

For example: a 65280 byte buffer containing data from 4 streams
will be made up from 408 E1 frames from each stream:

Frame number Stream number Number of bytes

1 1 40

2 2 40

3 3 40

4 4 40

5 1 40

...

1632 4 40

Definition:

UInt32 WriteStreamBuffer(IntPtr HandleData, byte[]
buffer, uint bufferSize)
Parameters:

HandleData Handle of the data port of the device

buffer Array of bytes to be sent. See summary
for restrictions on the format of this data
array.

bufferSize Size of buffer

Return Value:

Success : ERROR_SUCCESS

Failure : ERROR_INVALID_HANDLE

ERROR_READ_REGISTER

ERROR_WRITE_REGISTER

ERROR_UNKNOWN

ERROR_INVALID_DATA_LENGTH

ERROR_REPLAY_TIMEOUT

E1UC Switch/Groomer

API Reference Guide 3-27

sendFileToCard

Summary:

 A higher-level function for sending a file of data to E1UC data
port. Includes initialisation.

Definition:

UInt32 sendFileToCard(IntPtr HandleControl, IntPtr
HandleData, string FileLoc)
Parameters:

HandleControl Handle of the control device concerned

HandleData Handle of the data port of the device

FileLoc String representing the location on the
system of the file to be send

Return Value:

Success : ERROR_SUCCESS

Failure : ERROR_INVALID_HANDLE

ERROR_READ_REGISTER

ERROR_WRITE_REGISTER

ERROR_FILE_NOT_FOUND

ERROR_UNKNOWN

E1UC Switch/Groomer

API Reference Guide 3-28

Structures

STRUCT DEV_INFO

string DeviceName
string Channel
string SerialNumber
UInt32 LocationID
UInt32 DeviceIndex

STRUCT DEV_FW

UInt32 PartNum
UInt16 Version
UInt16 Revision
UInt64 SerNum

STRUCT DEV_CONFIGURATION

bool NvisBusy
bool isStandAlone
bool InputImedance120
bool InputImedanceHigh
bool isMaster
byte RxFifoControl
byte TxFifoControl

STRUCT USB_XFIFO

bool C2SFifoFull
bool C2SFifoOverRun
bool C2SFifoReset
bool S2CFifoEmpty
bool S2CFifoUnderRun
bool S2CFifoReset
bool FifoS2CDir

STRUCT STREAM_STATUS

UInt16 E1Stream;
bool isStreamActive
bool isExternalClock
bool isBypass
bool DataToUSB
byte FramingSelected

E1UC Switch/Groomer

API Reference Guide 3-29

STRUCT SIG_STATUS

bool isLOS
bool isLOF
bool isA1S
bool isFIFO_ERROR

STRUCT MATRIX_BUF

byte StreamSourceE1
byte StreamDestinationE1
bool OutputDestinationEmpty

STRUCT GROOM_BUF

byte TimeslotSource
byte SourceE1
byte TimeslotDestination
bool TimeslotEmpty
byte EmptyDefaultbyte

STRUCT TEST_SYSTEM

bool TestLed
bool Heartbeat

E1UC Switch/Groomer

API Reference Guide 3-30

Error Codes

ERROR_SUCCESS 0

ERROR_INVALID_HANDLE 1

ERROR_DEVICE_NOT_FOUND 2

ERROR_DEVICE_NOT_OPENED 3

ERROR_IN_OUT 4

ERROR_INSUFFICIENT_RESOURCES 5

ERROR_READ_REGISTER 6

ERROR_WRITE_REGISTER 7

ERROR_NOT_ENOUGH_BOARD 8

ERROR_INDEX_STREAM_OUT_OF_RANGE 9

ERROR_FILE_NOT_FOUND 10

ERROR_REPLAY_TIMEOUT 11

ERROR_UNKNOWN 100

E1UC Switch/Groomer

API Reference Guide 4-31

4. Recording input streams to File

Operation

The process for reading a file is as follows:

Get a data handle
Using the openE1UCDevice function eg:
HandleData =
myAPI.openE1UCDevice(myAPI.E1UC[0].CARD[0].Data, ref
CodeError);

Initialise data transfer
This will reset internal buffers and prepare E1UC to transfer data
over the USB port. Eg:
myAPI.InitDataTransfer(SingleHandle, HandleData, false,
E1UC_API.DEFINES.MASK_STREAM_0 |
E1UC_API.DEFINES.MASK_STREAM_1 |
E1UC_API.DEFINES.MASK_STREAM_2 |
E1UC_API.DEFINES.MASK_STREAM_3);

Read data to file
Reading data to file should be done on a separate thread. (See
code snippet below). This enables data to be transferred while
still being able to access status of the device to manage the
transfer. Note that the system uses a first-in-first-out memory
buffer. This should be cleared (reset) between mode switches,
(read to write, write to read) to ensure that ‘stale’ data is not
present.
To ensure that all data is transferred, it is necessary to flush the
FIFO by reading the exact number of dwords it contains until
empty, as indicated by the API call getE1UCXFifo.

End data transfer
When data has finished being transferred to file, some cleanup is
required. This is done with EndDataTransfer.
The USB data port should be closed with closeE1UCDevice

E1UC Switch/Groomer

API Reference Guide 4-32

Code snippet example (C#)
private void bReadStream_Click(object sender, EventArgs e)
{
 UInt32 CodeError = 9999;
 bReadStream.Enabled = false;
 Reading = new Thread(new ThreadStart(funct_Reading));

 HandleData =
myAPI.openE1UCDevice(myAPI.E1UC[0].CARD[0].Data, ref
CodeError);

 if (HandleControl != null)
 SingleHandle = HandleControl[0];

 myAPI.InitDataTransfer(SingleHandle, HandleData, false,
E1UC_API.DEFINES.MASK_STREAM_0 |
E1UC_API.DEFINES.MASK_STREAM_1 |
E1UC_API.DEFINES.MASK_STREAM_2 |
E1UC_API.DEFINES.MASK_STREAM_3);

 bReading = true;
 Reading.Start();

}

private void funct_Reading()
{
 string strPathFile = tbFolder0.Text;

 using (FileStream myFile = File.Open(strPathFile +
"\\Streams.bin", FileMode.Create, FileAccess.Write,
FileShare.None))
 {
 while (bReading)
 {
 myAPI.readStreamBuffer(HandleData, myFile);
 iCount++;
 }
 myFile.Close();

E1UC Switch/Groomer

API Reference Guide 4-33

 }
}
private void bStopReading_Click(object sender, EventArgs e)
{
 UInt32 CodeError = 9999;
 bReading = false;
 Reading.Join();
 myAPI.EndDataTransfer(SingleHandle, HandleData);
 //close handle data
 CodeError = myAPI.closeE1UCDataDevice(HandleData);
 bReadStream.Enabled = true;

 MessageBox.Show("Thread for reading finished")
}

E1UC Switch/Groomer

API Reference Guide 4-34

Data presentation

Data is presented as a concatenated serial stream of blocked
data, each block representing 1 E1 Stream.
Block structure is as follows:

 Byte 3 Byte 2 Byte 1 Byte 0

DWORD bit 31 bit 0

0 Time stamp (seconds)

1 Timestamp(milli
seconds)

Fraction
of ms

Frame
Status

reserve
d

E1
ID

2 TS 0 TS1 TS2 TS3

3 TS4 TS5 TS6 TS7

4 TS8 TS9 TS10 TS11

5 TS12 TS13 TS14 TS15

6 TS16 TS17 TS18 TS19

7 TS20 TS21 TS22 TS23

8 TS24 TS25 TS26 TS27

9 TS28 TS29 TS30 TS31

DWORD 0 and DWORD 1 Bytes 2 &3
Timestamp format: 32 bit second count since power up of
device + 10 bit millisecond count + 6 bit fraction of millisecond
(64 fractions).

DWORD 1 Byte 1
Frame Status: Bit 15: FRAMED –should the system be
looking for framed data
 bit 14: Signal present
 Bit 13: No data in this frame (pad frame)
 Bit 12: One or more frames dropped since the last good
frame. (dropped frame)
 Bits11-8 FRAME_DETECT Framing detected associated
with this block.Error! Reference source not found. Currently
only G.704 frame detect is defined,
 Bit 11 Bit 10 Bit 9 Bit 8
 0 0 0 0 No Frame detected
 0 0 0 1 G.704 Frame detected
N.B. If Bit 15 is 0, no detection is performed.

DWORD 1 Byte 0

E1UC Switch/Groomer

API Reference Guide 4-35

 Bits 7-5: reserved
 Bit 4-0 E1_ID. The number (0-15) of the E1 stream
associated with this block.

Frame status is dynamic, dependant on the detected state of
received signals.

File Header
200 bytes are reserved at the beginning of the file for
housekeeping information. This may be used for auditing and
setup purposes for file replay and reading applications.
All files written using the API automatically include this header.
The file header is structured as follows:
5 Fields of 40 bytes each, 1 field containing overall file
information, 1 field for each stream. Unused bytes are filled with
0x20 (ascii space).
Field 1 Device and File information

Byte 0 – Length of following Version information
Byte1- Byte(Version Length)
Type 4 Bytes (always ascii 3103)
1 byte .(period)
Major version number 1 Byte
1 byte . (period)
Minor version number 1 Byte
1 byte . (period)
Build Number.
Byte (2+Version Length) – Streams - bit position
representation of the number of active streams

Bit3 Bit2 Bit1 Bit0

Stream4 Stream3 Stream 2 Stream 1

Byte 3 + VersionLength Filename length of following
bytes
(Byte 4+Version Length) to (Byte 4+ Version Length) +
FileNameLength – string representing a short version of the
original filename, a maximum of 24 bytes.
This is used to hold a shortened version of the original file
name as recorded, and can be used in subsequent copy and
dub operations to provide a simple audit trail. The length byte
indicates the length of the following (ascii) string.

Field 2 -5 Stream Information
Each field contains information about one stream.

E1UC Switch/Groomer

API Reference Guide 4-36

Byte 0-1 short type Stream number, 0-3
Byte 2 Stream Status – bit field containing stream information
at the time of recording

Bit 0 - Active=1 : the stream was enabled
Bit 1 - External Clock =1
Bit 2 – Bypass = 1 – bypass mode selected during
recording
Bit 3 – DataToUSB=1
Note these bits are defined for troubleshooting and audit
purposes
Bit 4 – Corrupt =1. The file was not properly closed –
header information may be incomplete or incorrect.
Bit – 5 Copy = 1. This file is a copy or dub of an original

Byte 3 Framing – Framing is selected for this stream. Only
G.704 framing is supported currently. 0= No Framing 1= G704
Framing.
Bytes 4-11 Start time of recording – Windows 64-bit FILETIME
structure.(UTC)
Bytes 12-19 Start Byte - 64-bit integer specifying index of first
data byte written.
Bytes 20-27 Stop time of recording – Windows 64-bit
FILETIME (UTC)
Bytes 28-35 Stop Byte - 64-bit integer specifying index of last
data byte written.
Start and stop times are UTC and can be used to maintain
audit information during copy/dub processes.
Applications can also use this time information to provide
absolute time indices into the data file by synchronising with
the relative data frame timestamp.

Synchronisation
E1UC is a synchronous system. Stream 1 is the master stream
and system timing is derived from this stream. If there is no signal
in this input, the next input with a signal present will be used as
master.
To cope with situations where 2 signals (or more) with unrelated
clocks are used in the same system, an entire E1 frame (256 bits)
will either be dropped or a padding frame inserted to keep signals
aligned.

E1UC Switch/Groomer

API Reference Guide 4-37

When a frame is dropped, the subsequent frame received will
have a flag indicating that the previous frame went missing. If a
padding frame is inserted, the pad frame flag will be set.
The master stream will never have a frame go missing or get
padded (not withstanding USB buffer over/under-runs).
Note, bit 12 does not indicate that data went missing because of a
USB buffer overrun.

Buffering
Data is buffered to allow application latency variations to be
accommodated. However, when the host application is too
slow to either accept data in capture mode or present data in
replay mode, the USB buffer will overflow or become empty.
The application designer must ensure that this situation is
accommodated, using the buffer over and underrun flags as
appropriate.

Frame continuity in captured data can be checked by
reference to the incrementing frame timestamp and monitoring
of the pad/missing frame flags.

E1UC Switch/Groomer

API Reference Guide 4-1

This page intentionally blank

E1UC Switch/Groomer

API Reference Guide 5-1

5. SUPPORT

In this Section

IN THIS SECTION 5-1
WHAT TO DO IF YOU HAVE A PROBLEM 5-1
SERVICING, MAINTENANCE AND REPAIRS 5-1
IF YOU NEED SUPPORT 5-1
SUPPORT REQUESTS 5-2
SOMERDATA CONTACT INFORMATION 5-3

What to do if you have a problem

Firstly, please ensure that you have followed the installation,
connection and operation instructions in the appropriate User
Guide.

Also, check the Troubleshooting section (where appropriate)
to eliminate common problems.

Servicing, Maintenance and Repairs

Please contact your supplier or SomerData for all questions
relating to maintenance and repairs.

Any unauthorised attempt to open, modify or otherwise repair
the product will invalidate the SomerData warranty and may
result in the product being left in an irreparable condition.

If you need Support

For warranty, technical and application support issues, you
should initially contact your supplier to check whether your
SomerData product is covered by warranty, extended warranty
or maintenance contract.

At SomerData, we will make our best efforts to provide prompt
and friendly support by phone, fax and e-mail.

Diagnosing a problem will require your co-operation and we
expect you to provide a detailed description of the problem in
the form of a detailed Fault Report.

E1UC Switch/Groomer

API Reference Guide 5-2

Support Requests

When contacting SomerData for support, please provide as
much information as possible about the problem or issue for
which you require assistance.

We will be able to deal with your request more efficiently if you
provide the following details (where available) in your Fault
Report:

Part Number or Model Number
(for example E1UC-4)

Serial Number (for example 2016/01/001)

Software Version (for example 2.0)

Details of any symptoms or error messages

Diagnostics information (if available)

Sequence of events/actions or other circumstances that
triggered the problem

How you are able to identify that there is a problem

How you have been able to measure, log or otherwise display
the problem

Details of the host PC (if appropriate) including: operating
system; hardware configuration; other hardware devices (e.g.
additional PCI cards); other software applications (e.g.
analysis or processing programs) that are running at the same
time

Sample data files (if appropriate)

When we acknowledge your support request, you will be given
a Support Tracking Number (STN), which should be quoted in
all further correspondence relating to that specific support
request.

E1UC Switch/Groomer

API Reference Guide 5-3

SomerData Contact Information

Address: Somerdata Limited
1 Riverside Business Park,
St Annes Road
Bristol
BS4 4ED
UK

Phone: UK 0117-9634050
 International +44 117-9634050

E-Mail: support@somerdata.com

Website: www.somerdata.com

mailto:support@somerdata.com
http://www.somerdata.com/

